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Введение

В работе исследуется следующий эффект: при столкновении двух частиц
вблизи горизонта вращающейся чёрной дыры Керра энергия в системе центра
масс может неограниченно расти (эффект BSW – Bañados-Silk-West). Он де-
монстрирует, как экстремальные гравитационные поля могут служить “уско-
рителями частиц” с энергиями, недостижимыми в лабораторных условиях. Это
явление исследовалось в ряде работ, где было показано, что ключевую роль иг-
рает наличие “критической” частицы, для которой выполняется условие

E − ωHL = 0,

где ωH – угловая скорость чёрной дыры на горизонте.
Цель данной работы – дать альтернативное кинематическое объяснение

эффекта BSW, основанное на анализе трёхмерных скоростей частиц.
Эффект представляет интерес как для теоретической физики, открывая

возможность исследования планковских масштабов вблизи горизонта чёрной
дыры, так и для астрофизики, поскольку столкновения с неограниченно расту-
щими энергиями могут влиять на наблюдаемый поток испускаемых частиц [6,
7].
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1. Основные формулы

Рассмотрим пространство-время вращающейся черной дыры, описывае-
мое метрикой Керра:

ds2 = −N 2dt2 + gϕϕ(dϕ− ωdt)2 + dl2 + gzzdz
2. (1)

N - коэффициент, который определяет, насколько сильно замедляется вре-
мя в гравитационном поле черной дыры по сравнению с удаленным наблюдате-
лем. На горизонте событий выполняется условиеN = 0, что соответвует точки,
в которой временная компонента метрики исчезает. На бесконечности N → 1

(время течет ”нормально”). gϕϕ , gzz - коэффициенты метрики, не зависящие от
t и ϕ. Предполагается, что эти коэффициенты являются четными функциями z,
поэтому экваториальная плоскость θ = π/2 (z = 0) – плоскость симметрии.

Координаты задаются следующим образом: xµ = (t, l, z, ϕ), а 4-скорость
uµ = (ṫ, l̇, ż, ϕ̇) , где l - радиальная координата, перпендикулярная поверхности
горизонта событий, z - координата, перпендикулярная экваториальной плоско-
сти, ϕ - угол поворота вокруг оси вращения черной дыры.

Рассмотрим движениемассивных частиц в экваториальной плоскости θ =

π/2 и получим уравнения движения. Для начала, найдём выражение для лагран-
жиана частицы L.

S = −m

∫
dτ = −m

∫ √
−(ds)2 =

= −m

∫ √
N 2(ṫ)2 − gϕϕ(ϕ̇− ωṫ)2 − l2 − (ż)2gzz dτ

S - действие для частицы массой m, движущейся в пространстве-времени с
метрикой (1), τ - собственное время частицы.

С другой стороны: S =
∫
Ldτ

Таким образом, L = −m
√

N 2(ṫ)2 − gϕϕ(ϕ̇− ωṫ)2 − l2 − (ż)2gzz.

Так как L явно не зависит от t и ϕ, то обобщённые импульсы, а следовательно,
энергия и угловой момент вращения – сохраняющиеся величины:

−pt = −dL
dṫ

= E pϕ = dL
dϕ̇

= L

С учётом нормировки 4-скорости uµuµ = −1, и принимая массу m=1, получаем
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уравнения движения:

ṫ = u0 =
E − ωL

N 2
, (2)

ϕ̇ =
L

gϕϕ
+

ω(E − ωL)

N 2
, (3)

l̇2 =
(E − ωL)2

N 2
− 1− L2

gϕϕ
, (4)

В работе используются единицы измерения, в которых скорость света c =
1. Предполагается, что ṫ > 0, что соответствует условиюE−ωL > 0 (движение
вперед во времени). Однако на горизонте событий допускается равенство E −
ωHL = 0 (индекс «H» обозначает величины, вычисленные на горизонте).

В зависимости от величины энергии и углового момента, частицы клас-
сифицируются следующим образом:

• Обычные частицы: E − ωHL > 0

• Критические частицы: E − ωHL = 0

Такая классификация позволяет анализировать динамику частиц вблизи гори-
зонта событий и исследовать эффекты, связанные с их столкновениями.

Для удобства расчётов, перейдём вZAMO (zero angularmomentumobservers)
— локально инерциальную систему отсчёта, связанную с наблюдателем, кото-
рый не имеет углового момента ( L = 0 ) и ”покоится” относительно локаль-
ного пространства-времени, но может иметь радиальное ускорение. В метрике
Керра ZAMO определяется через тетрадные векторы h(a)µ , которые позволяют
проектировать 4-векторы на локальную систему координат и использовать фор-
мулы специальной теории относительности в локально плоском пространстве-
времени. Здесь a—индекс локального лоренцева пространства, а µ— коорди-
натный индекс. В координатах xµ = (t, l, z, ϕ) тетрадные векторы выбираются
следующим образом:

h(0)µ = −N · (1, 0, 0, 0) - временная компонента (5)

h(1)µ = (0, 1, 0, 0) - радиальная компонента (6)

h(2)µ =
√
gzz(0, 0, 1, 0) - вертикальная компонента (7)

h(3)µ =
√
gϕϕ(−ω, 0, 0, 1) - азимутальная компонента (8)
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Трёхмерная скорость частицы в системе ZAMO задаётся проекцией 4-
скорости uµ на тетрадные векторы:

v(i) = v(i) =
uµhµ(i)

−uµhµ(0)
, i = 1, 2, 3. (9)

где hµ(0) - временная компонента тетрады, hµ(i) - пространственные компонен-
ты.

Из уравнений движения (2)-(4) и свойств тетрады получаем:
Проекция 4-скорости частицы uµ на временную компоненту тетрадного

базиса:
uµh

µ
(0) = gµνu

νhµ
(0) = −Nṫ = −E − ωL

N
. (10)

Эта проекция представляет собой энергию частицы Eлок, измеренную наблю-
дателем ZAMO в его локальной системе отсчёта.
Проекция на азимутальное направление:

uµh
µ
(3) = gµνu

νhµ
(3) =

√
gϕϕ(−ωu0 + u3) =

L
√
gϕϕ

(11)

Эта проекция представляет собой локальный угловой момент частицы, изме-
ренный наблюдателем в ZAMO.
Азимутальная скорость:

v(3) =
LN

√
gϕϕ(E − ωL)

(12)

Радиальная скорость:

v(1) =

√
1− N 2

(E − ωL)2

(
1 +

L2

gϕϕ

)
(13)

Полная скорость v определяется как:

v2 = [v(1)]2 + [v(2)]2. (14)

Отсюда следуют важные для дальнейшего анализа соотношения:

E − ωL =
N√
1− v2

(15) (15)
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v2 = 1−
(

N

E − ωL

)2

(16)

2. Предельные случаи относительной скорости

Энергия столкновения двух частиц в системе центра масс Ec.m. определя-
ется как скалярная величина:

E2
c.m. = −(pµ1 + pµ2)(p1µ + p2µ) = m2

1 +m2
2 − 2m1m2u

µ
1u2µ, (17)

где pµi = miu
µ
i —4-импульс i-ой частицы (i = 1, 2),mi —масса покоя частицы,

uµi — её 4-скорость.
В искривлённом пространстве-времени (ОТО): uµ1u2µ = gµνu

µ
1u

ν
2

В плоском пространстве времени (СТО): uµ1u2µ = ηµνu
µ
1u

ν
2 ,

где ηµν — метрика Минковского (−1, 1, 1, 1).
Для удобства, выберем систему отсчёта, связанную с одной из частиц (на-

пример, с частицей 2). В тетрадном представлении это позволяет использовать
формулы специальной теории относительности в локально плоском пространстве-
времени:

uµ1u2µ = ηµνu
µ
1u

ν
2 = −u01u

0
2 + u11u

1
2 + u21u

2
2 + u31u

3
2

Учитывая, что в СТО uµ = (γ, γv), получим: uµ1u2µ = −γ1γ2(1− v1v2),
где γ = 1/

√
1− v2 —Лоренц-фактор

В системе, в которой частица 2 покоится:
ua2 = (1, 0, 0, 0) – 4-скорость частицы 2 (в её собственной системе отсчёта коор-
динаты изменяются только по времени)
ua1 = (γ, γw(1), γw(2), γw(3)) – 4-скорость частицы 1, где w(i) — компоненты от-
носительной 3-скорости частицы 1 в этой системе.

Тогда их скалярное произведение: ua1u2a = −γ

В результате:

γ = −ua1u2a =
1√

1− w2
= γ1γ2(1− v1v2) (18)
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Из (18) выражается относительная скорость

w =

√
1− (1− v21)(1− v22)

(1− n1n2v1v2)2
(19)

Рассмотрим различные сценарии поведения относительной скорости w

между двумя частицами в зависимости от их скоростей v1, v2 и их взаимной
ориентации.

а) Одна частица ультрарелятивистская.
v1 → 1, v2 < 1, (n1, n2) – произвольное.

Из уравнения (19) следует, что относительная скорость w → 1 независимо от
значения (n1, n2). Это соответствует фундаментальному принципу, согласно ко-
торому скорость света c = 1 одинакова во всех системах отсчёта.

б) Две ультрарелятивистские частицы
Обе частицы приближаются к скорости света: vi = 1−Aiδ, гдеAi —константы,
δ ≪ 1.

б1) (n1, n2) ̸= 1 – непараллельные траектории
w → 1 при δ → 0:

w2 ≈ 1− 4A1A2δ
2

[1− (n1, n2)]2
(20)

б2) (n1, n2) = 1 – частицы движутся в одном направлении

w ≈ |A1 − A2|
A1 + A2

< 1 (21)

В этом случае относительная скорость остаётся досветовой, даже если собствен-
ные скорости частиц стремятся к 1.

в) Две досветовые частицы
v1 < 1, v2 < 1, (n1, n2)— произвольное

В этом случаеw < 1. Хотя этот случай тривиален с точки зрения относительной
скорости, он играет важную роль в контексте обсуждаемых эффектов (напри-
мер, при анализе столкновений вблизи горизонта чёрной дыры).
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3. Асимптотики вблизи горизонта

Исследуем поведение скоростей частиц вблизи горизонта событий для
двух типов частиц: обычных и критических.

• Обычные частицы (E − ωHL ̸= 0)

При приближении к горизонту (N → 0) из (15) следует, что абсолютная ско-
рость v → 1. Из (12) и (13) получаем:

v(3) → 0 – азимутальная скорость,
v(1) → 1 – радиальная скорость

Обычные частицы достигают скорости света у горизонта, двигаясь радиально
внутрь чёрной дыры, что согласуется с эффектом ”замораживания” для внеш-
него наблюдателя. Для любых двух таких частиц (n1, n2) = 1.

• Критические частицы (E − ωHL = 0)

Угловая скорость чёрной дыры вблизи горизонта раскладывается в ряд:

ω = ωH − B1N +B2N
2 + . . . (22)

Здесь, из-за свойств метрики B1 = 0 для неэкстремальных чёрных дыр (a < M),
B1 ≠ 0 может появляться в экстремальном случае (a = M) или при учёте допол-
нительных эффектов [8].
С учётом (15), получим:

v2 = 1− 1

L2B2
1

< 1 (23)

То есть, критическая частица не достигает скорости света на горизонте, в отли-
чие от обычных частиц. Компоненты скорости v(1) (радиальная) и v(3) (азиму-
тальная) имеют одинаковый порядок. Частица пересекает горизонт под ненуле-
вым углом к нормали и для двух критических частиц: (n1, n2) ̸= 1.
На основании этих свойств можно классифицировать столкновения частиц:

А. Столкновение двух обычных частиц
При приближении к горизонту (N → 0), их скорости v → 1, направления
движения строго радиальны (n1 ∥ n2), относительная скорость w < 1 (случай
b2). Эффект неограниченного роста энергии отсутствует. Даже при ультрареля-
тивистских скоростях, параллельность траекторий обычных частиц исключает
возникновение сингулярности в энергии системы центра масс.
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Б. Столкновение двух критических частиц
Их скорости на горизонте v < 1, направления движения образуют ненулевой
угол (n1, n2), относительная скорость w < 1 (случай c). Эффект неограничен-
ного роста энергии отсутствует. Критические частицы, несмотря на их особые
свойства, при столкновении друг с другом не создают условий для сингулярно-
го роста энергии.

В. Столкновение обычной (1) и критической частицы (2)
Этот тип столкновений относится к случаю а, описанному выше. В результате
w → 1, γ → ∞, эффект неограниченного роста энергии возможен.

Реализуемость эффекта осложняется тем, что критическая частица не мо-
жет достичь горизонта за конечное собственное время, так как собственное рас-
стояние до горизонта бесконечно для частицы с v2 < 1. Поэтому рассмотрим
околокритические частицы (E ≈ ωHL).

В неэкстремальном случае (случае, относящемся к чёрным дырам, у ко-
торых параметр вращения a не достигает своих максимально возможных зна-
чений) околокритическая частица не может достичь горизонта, поскольку при
N → 0 выполняется: ω − ωH ∼ N 2 (подробнее в [3],[5]), что делает правую
часть уравнения (4) отрицательной. Это означает, что частица физически не
может существовать в такой области (мнимая скорость), её траектория “зависа-
ет” вблизи горизонта. Однако частица может сколь угодно близко приближаться
к горизонту. То есть для наблюдения эффекта необходимо обеспечить положи-
тельность l̇2 в (4).
Пусть энергия частицы близка к критическому значению:

E = ωHL(1 + δ), δ ≪ 1.

Для выполняения условия, необходимо δ ≥ N . Параметр δ можно представить
в виде: δ = AN(P ), где:A—конечный коэффициент, P —точка столкновения.
Используя (16), получим:

1− v2 =

(
N

E − ωHL

)2

≈ 1

(ωHLA)2
̸= 0.

Таким образом, v < 1. То есть, относительная скорость w → 1, лоренц-фактор
γ → ∞ и энергия в системе центра масс неограниченно растёт, когда точка
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столкновения выбирается всё ближе к горизонту (N → 0), а энергия частицы
приближается к критическому значению (δ → 0) так, чтобы δ ≥ N (тонкая
настройка параметров). Однако для этого требуется, чтобы:

• Частица многократно рассеивалась.

В метрике Керра частицы не могут изначально иметь на бесконечности
параметры, удовлетворяющие критическому условию E ≈ ωHL(1 + δ), так
как это соотношение достигается только вблизи горизонта. Чтобы оно выпол-
нялось, частица должна приобретать критичность в процессе движения, что,
в свою очередь, требует многократных взаимодействий с окружающей средой
(аккреционным диском, другими частицами) и постепенной коррекции пара-
метров E и L через гравитационное излучение, электромагнитное торможение
(для заряженных частиц) или столкновение с нерелятивистскими частицами
плазмы.

• Столкновение должно произойти в узкой полосе вблизи горизонта

Ширина зоны столкновения оценивается как r ≈ rHδ (для типичных па-
раметров r ≤ 10−3rH), где rH — радиус горизонта. За пределами этой зоны δ
становится большеN , и относительная скорость частиц w перестает стремить-
ся к c. (подробнее см. [2],[3]).

Это объясняет, почему эффект BSW остается теоретически предсказан-
ным, но редко наблюдаемым в астрофизических условиях.

4. Столкновение массивных и безмассовых частиц

Если одна из сталкивающихся частиц безмассовая, приведенное выше
объяснение возникновения эффекта BSW неверно, поскольку для безмассовой
частицы не существует сопутствующей системы отсчета, в любой системе от-
счета такая частица движется всегда со скоростью света. Для краткости, назо-
вём массивную частицу электроном, а безмассовую - фотоном.

Случай, когда обе частицы не имеют массы не рассматривается. Класси-
ческая электродинамика является линейной теорией, поэтому взаимодействие
между фотонами может происходить только за счет слабых квантово электро-
динамических эффектов, которыми в данной работе пренебрегают.
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Вид уравнений движения для фотона отличаются, по сравнению с (2)–(4).
Во-первых, для фотона энергия выражается через частоту: E = hν (в

дальнейшем считаем, что h = 1).
Во-вторых, в случае безмассовых частиц (фотонов) их движение описы-

вается светоподобными геодезическими (ds2 = 0), в отличие от массивных ча-
стиц, где используется собственное время τ (нормированное как ds2 = −c2dτ 2).
Поскольку для фотонов dτ = 0, то дифференцирование координат производит-
ся по, так называемому аффинному параметру λ.

В-третьих, волновой вектор kµ = dxµ/dλ – это 4-импульс фотона (по-
скольку для безмассовых частиц pµ = h̄kµ). В ОТО kµ – касательный вектор
к светоподобной геодезической и сохраняется вдоль неё (в стационарных и
аксиально-симметричных пространствах).
Учитывая нормировку волнового вектора kµkµ = 0, уравнения движения для
фотона в экваториальной плоскости (θ = π/2) имеют вид:

dt

dλ
= k0 =

ν0 − ωL2

N 2
, (24)

dϕ

dλ
=

L2

gϕϕ
+

ω(ν0 − ωL2)

N 2
, (25)

(
dl

dλ

)2

=
(ν0 − ωL2)

2

N 2
− L2

2

gϕϕ
(26)

где ν0 = −k0 – частота, измеренная удалённым наблюдателем на бесконечности
(ω → 0 и N → 1), L2 = kϕ – сохраняющийся угловой момент фотона.

По аналогии, предполагается, что dt
dλ > 0, так что ν0 − ωL > 0 (движение

вперёд во времени), за исключением горизонта, где допускается равенство ν0−
ωHL1 = 0 (критический фотон).

Хотя фотон всегда движется со скоростью света, переход в ZAMO позво-
ляет локально измерить частоту и импульс фотона через проекции k(a) и учесть
гравитационное красное смещение. Поэтому для объяснения бесконечного ро-
ста энергии, применим этот подход к фотону.

Для фотона используется волновой вектор kµ = dxµ/dλ (нормировка:
kµkµ = 0). Поскольку kµ светоподобен, dτ = 0, поэтому используется пара-
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метр λ, не требующий нормировки как в (9):

k(i) = k(i) = kµhµ(i), (27)

k(0) = kµh(0)
µ = −kµhµ(0). (28)

Используя полученное соотношение и уравнения движения (2)-(4), находим:

k(1) = −

√
ν2 − L2

gϕϕ
, (29)

k(3) =
L

√
gϕϕ

. (30)

Аналог уравнения (15) имеет вид:

ν =
ν0 − ωL

N
. (31)

Для безмассовых частиц используется таже тетрада, что и для массивных,
но нормировка kµkµ = 0 упрощает уравнения и временная компонента тетрады
для фотона будет иметь вид:

hµ
(0) =

(
1

N
, 0, 0,

ω

N

)
. (32)

Квадрат пространственной части волнового вектора:

k2 = [k(1)]2 + [k(2)]2 =
(ν0 − ωL)2

N 2
= ν2, (33)

k(0) = −kµh
µ
(0) =

ν0 − ωL

N
= ν. (34)

Ранее было получено:
Для обычных электронов в пределе горизонта событий (N → 0):

v(3) → 0, v(1) → 1

Единичный вектор скорости n⃗1 =
v⃗

v
направлен вдоль координаты l, то есть

перпендикулярно горизонту.
Для критических электронов компоненты v(1) и v(3) имеют одинаковый поря-
док величины, а вектор n⃗1 нестрого перпендикулярен горизонту.
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Для фотонов компоненты k(1) и k(3) имеют одинаковый порядок. Аналогичные

свойства наблюдаются и для фотонов: единичный вектор n⃗2 =
k⃗

k
не перпенди-

кулярен горизонту.
Таким образом (n⃗1, n⃗2) = 1 – верно только для обычных электронов (или

критического фотона и электрона – подробнее далее), а для остальных частиц
(n⃗1, n⃗2) ̸=1.

5. Общая классификация столкновений частиц

Случай 1. Критический электрон и обычный фотон
При переходе в систему отсчёта, связанную с электроном, частота фотона

ν ′ в этой системе связана с частотой ν в системе ZAMO релятивистской форму-
лой:

ν ′ = γ(ν − k · v) = νγ [1− ν(n1 · n2)] (35)

Для критической частицы v ̸= 1, поэтому лоренц-фактор γ остаётся ко-
нечным, скалярное произведение (n1 · n2) ̸= 1, поэтому и ν ′ имеет порядок ν.
Поскольку фотон обычный, то с учётом (37) при N → 0, ν → ∞, что приводит
к ν ′ → ∞.

Результирующий эффект можно интерпретировать как следствие двухфак-
торов. С одной стороны, существует бесконечное синее смещение излучения
из-за сильного гравитационного поля вблизи черной дыры. С другой стороны,
существует красное смещение из-за эффекта Доплера, поскольку в лаборатор-
ных условиях приемник излучения удаляется от фотона (v(1) < 0 и k(1) < 0). В
рассматриваемом случае первый фактор бесконечен, тогда как второй конечен,
так что конечный результат обусловлен синим смещением.
Случай 2: Обычный электрон и критический фотон

Для критического фотона ν конечно. Поскольку электрон обычный,
v → 1, а γ → ∞. Скалярное произведение (n1 · n2) ̸= 1, поэтому ν ′ → ∞.

Пусть в плоском пространстве-времени фотон с частотой ν движется в ла-
бораторной системе отсчёта. Обычный электрон движется со скоростью v от-
носительно этой системы отсчета. Так как (n1 · n2) ̸= 1, рассмотрим случай
ортогонального движения (n1 · n2) = 0, тогда из (41): ν ′ = νγ.

Так как электрон обычный, то при приближении к горизонту v → 1, при
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этом γ → ∞, что приводит к ν ′ → ∞.
В этом случае гравитационное синее смещение даёт конечное увеличение

частоты ν для критического фотона. Доплеровский эффект вносит бесконеч-
ный вклад из-за ультрарелятивистского движения электрона. Таким образом,
результирующая частота ν ′ определяется именно доплеровским эффектом.
Случай 3. Обе частицы критические.

Критическая частица (электрон или фотон) характеризуется тем, что её
энергия и угловой момент связаны соотношением: E = ωHL, то есть их движе-
ние синхронизировано с вращением пространства-времени вблизи горизонта.

Поэтому единичный вектор электрона: n1 = v/v не строго перпендику-
лярен горизонту, а единичный вектор фотона n2 = k/k также не радиален, но
совпадает по направлению с n1.

Тогда (n1 · n2) = 1, v < 1 – в системе, связанной с критическим элек-
троном, поэтому частота фотона ν - конечна. Из (41) следует, что ν ′ - также
конечная величина.

Таким образом, гравитационное синее смещение и эффект Доплера огра-
ничены и не могут привести к возникновению бесконечных энергий в данном
случае.
Случай 4. Обе частицы обычные.

Из (15) следует, что γ ∼ 1

N
, а из (37): ν ∼ 1

N
.

Из (12), (13), (35), (36): 1− (n1 · n2) ∼ N 2.

То есть, с учётом (41):

ν ′ ∼ 1

N 2
·N 2 = 1 = const

Таким образом, расходимости γ и ν при приближении к горизонту ”ком-
пенсируются” – эффект бесконечного красного смещения, обусловленный эф-
фектом Доплера, для приемника, удаляющегося от фотона, полностью компен-
сируется бесконечным синим смещением частоты фотона.
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Заключение

В работе представлено общее объяснение эффекта бесконечной энергии
в системе центра масс для частиц, сталкивающихся вблизи горизонта чёрной
дыры. Объяснение основано на кинематике частиц в плоском пространстве-
времени и свойствах горизонта, рассмотрено отдельно для массивных и без-
массовых частиц.

Для массивных частиц:

• В системе ZAMO обычные частицы достигают скорости света у горизон-
та, критические частицы имеют скорость, отличную от c.

• Критические частицы падают на горизонт неперпендикулярно (для вра-
щающихся чёрных дыр) и требуют бесконечного собственного времени
для достижения горизонта, обычные частицы падают на горизонт строго
вдоль радиального направления.

• Столкновение обычной и критической частиц приводит к эффекту BSW.

Для безмассовых частиц:

• Критерий критичности: конечность частоты фотона у горизонта.

• Эффект BSW возможен, только если одна из частиц критическая.

• Классификация случаев:

– Критический электрон + обычный фотон: Eц.м. → ∞.

– Критический фотон + обычный электрон: Eц.м. → ∞.

– Две критические частицы: конечная Eц.м..

– Две обычные частицы: компенсация эффектов→ конечная Eц.м..
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